Argon does not affect cerebral circulation or metabolism in male humans
نویسندگان
چکیده
OBJECTIVE Accumulating data have recently underlined argon´s neuroprotective potential. However, to the best of our knowledge, no data are available on the cerebrovascular effects of argon (Ar) in humans. We hypothesized that argon inhalation does not affect mean blood flow velocity of the middle cerebral artery (Vmca), cerebral flow index (FI), zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe), resistance area product (RAP) and the arterio-jugular venous content differences of oxygen (AJVDO2), glucose (AJVDG), and lactate (AJVDL) in anesthetized patients. MATERIALS AND METHODS In a secondary analysis of an earlier controlled cross-over trial we compared parameters of the cerebral circulation under 15 minutes exposure to 70%Ar/30%O2 versus 70%N2/30%O2 in 29 male patients under fentanyl-midazolam anaesthesia before coronary surgery. Vmca was measured by transcranial Doppler sonography. ZFP and RAP were estimated by linear regression analysis of pressure-flow velocity relationships of the middle cerebral artery. CPPe was calculated as the difference between mean arterial pressure and ZFP. AJVDO2, AJVDG and AJVDL were calculated as the differences in contents between arterial and jugular-venous blood of oxygen, glucose, and lactate. Statistical analysis was done by t-tests and ANOVA. RESULTS Mechanical ventilation with 70% Ar did not cause any significant changes in mean arterial pressure, Vmca, FI, ZFP, CPPe, RAP, AJVDO2, AJVDG, and AJVDL. DISCUSSION Short-term inhalation of 70% Ar does not affect global cerebral circulation or metabolism in male humans under general anaesthesia.
منابع مشابه
Cerebral blood flow and metabolism studies comparing krypton 85 desaturation technique with argon desaturation technique using the mass spectrometer.
Cerebral Blood Flow and Metabolism Studies Comparing Krypton 85 Desaturation Technique With Argon Desaturation Technique Using the Mass Spectrometer • Average cerebral blood flow determinations were performed 26 times comparing argon desaturation curves measured by mass spectrometry to the krypton 85 desaturation technique of McHenry. During 17 of these studies krypton 85 and argon desaturation...
متن کاملCerebral formation of free radicals during hypoxia does not cause structural damage and is associated with a reduction in mitochondrial PO2; evidence of O2-sensing in humans?
Cellular hypoxia triggers a homeostatic increase in mitochondrial free radical signaling. In this study, blood was obtained from the radial artery and jugular venous bulb in 10 men during normoxia and 9 hours hypoxia (12.9% O(2)). Mitochondrial oxygen tension (p(O(2))(mit)) was derived from cerebral blood flow and blood gases. The ascorbate radical (A(•-)) was detected by electron paramagnetic...
متن کاملCorrection: Neuroprotection by Argon Ventilation after Perinatal Asphyxia: A Safety Study in Newborn Piglets
UNLABELLED Hypothermia is ineffective in 45% of neonates with hypoxic-ischemic encephalopathy. Xenon has additive neuroprotective properties, but is expensive, and its application complicated. Argon gas is cheaper, easier to apply, and also has neuroprotective properties in experimental settings. The aim was to explore the safety of argon ventilation in newborn piglets. METHODS Eight newborn ...
متن کاملInhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia
Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy,...
متن کاملArgon, Xenon, Hydrogen, and the Oxygen Consumption and Glycolysis of Mouse Tissue Slices
The effects of xenon, argon, and hydrogen on the aerobic and anaerobic metabolism of mouse liver, brain, and sarcoma slices have been investigated. Xenon was found to alter the rates of metabolism of these tissues in a manner almost identical with helium. The gas increased the rate of oxygen consumption in all three tissues and significantly depressed that of anaerobic glycolysis in brain and l...
متن کامل